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Self-diffusion in an isotopic fluid
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An expression for the sixth-frequency sum rule of the velocity correlation function is derived for a two-
component system. This, along with lower-order frequency sum rules and Mori’s memory-function formalism,
have been used to study the mass dependence of self-diffusion in an isotopic Lennard-Jones fluid. The effect
of inclusion of the sixth-frequency sum rule on the mass dependence of a self-diffusion coefficient of a single
heavy particle in a fluid has been studied explicitly. It is found that the ratio of the self-diffusion coefficient of
a heavy particle to that of a fluid particle is not affected by the inclusion of the sixth-order sum rule. It is also
found that for very high mass ratios the self-diffusion coefficients of a heavy particle can have a minimum
value which is 1/A2 times the self-diffusion coefficient of fluid particles. The mole fraction dependence and
thermodynamic state dependence of the mass dependence of self-diffusion of a heavy particle in the host fluid
are also studied.@S1063-651X~98!15812-9#

PACS number~s!: 66.10.2x, 66.30.Hs
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I. INTRODUCTION

In recent years there has been a keen interest to s
independently the effect of variation in mass, size, and in
action between the particles of a binary fluid on transp
phenomena. Such investigations have been possible only
to computer simulations and theoretical studies in wh
these parameters can be varied independent of each o
For this purpose Lennard-Jones fluids are found to be
most suitable systems because of their simplicity. The m
dependence of the self-diffusion coefficient in a binary flu
mixture has been studied through computer simulati
@1–6#. The computer simulations have shown a weak m
dependence of the self-diffusion coefficient, which is
agreement with the experimental observations. Theore
attempts@4–10# made within Mori’s memory-function for-
malism have also proven weak mass dependence of the
diffusion coefficient. In one such attempt, it was argued@10#
that the weak mass dependence of the self-diffusion co
cient comes from the higher-order Mori coefficients~related
to sum rules!. Therefore, knowledge of higher-order su
rules is very much desirable. However, the expressions
the sum rules of the velocity autocorrelation~VAC! function
for a two-component system are presently known up
fourth order only. There exist some estimates of the high
order sum rules obtained from computer simulations@5,11#
but they are not sufficient to study the effect of higher-ord
sum rules on the mass dependence of the self-diffusion
efficient. In the present work, we derive an analytical expr
sion for the sixth-frequency sum rule of the VAC functio
for a two-component system, in general, in which inter
tions, size of particles, and masses of the particles may
varied independently. This expression for the sum ru
within Mori’s memory-function formalism@12#, has been
used to study the mass dependence of the self-diffusion
efficient in an isotopic fluid. It is found that the inclusion o
the sixth sum rule does not alter the qualitative conclus
PRE 591063-651X/99/59~1!/460~9!/$15.00
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drawn@7# earlier using sum rules up to fourth order. Thus,
is confirmed that the mass dependence comes only from
lower-order Mori coefficients. We have also studied the co
centration and thermodynamic state dependence of the m
dependence of the self-diffusion coefficient.

The paper is organized as follows. Expressions for
frequency sum rules of the VAC function as a function
mass and concentration are derived in Sec. II, and an exp
sion for the self-diffusion coefficient is given in Sec. III. I
Sec. IV, an analytical result for the mass dependence of
self-diffusion coefficient is obtained. Results obtained
Mori’s coefficients and the self-diffusion coefficient as
function of mass, concentration, temperature, and density
discussed in Sec. V. Finally, the work is concluded in S
VI.

II. FREQUENCY SUM RULES

We consider an isotopic fluid withN5N11N2 number of
particles, whereN1 is the number of light particles of atomi
massml andN2 is the number of heavy particles of atom
massmh , such thatmh /ml.1. Expressions for the normal
ized velocity autocorrelation functions for such a system
given as

C~ t,ml !5
1

N1
(
i 51

N1 ^v ix~ t !v ix~0!&
kBT/ml

~1!

and

C~ t,mh!5
1

N2
(
i 51

N2 ^v ix~ t !v ix~0!&
kBT/mh

, ~2!

wherev ix(t) is thex Cartesian component of the velocity o
the i th particle at a timet. Angular brackets in the abov
equations represent the ensemble average. The short
expansion of the VAC function is
460 ©1999 The American Physical Society
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PRE 59 461SELF-DIFFUSION IN AN ISOTOPIC FLUID
C~ t,m!512C2~m!
t2

2!
1C4~m!

t4

4!
2C6~m!

t6

6!
1¯ ,

~3!

where the coefficientsC2(m), C4(m), and C6(m) are
second-, fourth-, and sixth-frequency sum rules of the V
function of the species of massm, respectively. In the presen
work we will use Mori’s memory-function formalism an
short time properties of the VAC function to study the effe
of variation in the mass and concentration of particles on
self-diffusion coefficient. Therefore, first of all we will ex
amine some of the exact properties, namely the freque
sum rules of the VAC functions for an isotopic fluid. Expre
sions for the second and fourth sum rules have already b
derived@7,8# and are given as

C2~ml !5
n

ml
E dr1g~r 1!U1xx ~4!

and

C4~ml !5
I 1

ml
2 F2c1~12c!S 11

ml

mh
D G1

I 2

ml
2 @c21~12c!2

12c~12c!#, ~5!

whereI 1 andI 2 are integrals involving pair distribution func
tions g(r ) and pair potentialU(r ), given as

I 15nlE dr1g~r 1!~U1xa!2 ~6!

and

I 25nl
2E E dr1dr2g3~r1 ,r2!U1xaU2xa . ~7!

In these equationsnl andc(5N1 /N) are the number densit
and mole fraction of light particles and we have used
notation
t
e

cy

en

e

U1ab5
d2U~r 1!

dr1adr1b
. ~8!

r a andr b are Cartesian components ofr . The subscript 2 on
U in Eq. ~7! implies that the argument of the pair potentia
U(r 1), is changed fromr 1 to r 2 . In Eq. ~7!, g3(r1 ,r2) rep-
resents the static triplet correlation function. In the derivat
of these frequency sum rules, it is assumed that the parti
of the system interact via the same interaction potential s
to represent an isotopic fluid. Here it may be noted that
terms in Eq.~5! with c or c2 as the multiplicator are due to
interaction between light-light particles, and the terms
volving (12c) or (12c)2 as the multiplicator are due to
interaction between light-heavy particles. Expressions
C2(mh) andC4(mh) can be obtained from Eqs.~4! and ~5!
by interchangingml by mh , c by (12c), and replacingnl by
nh .

In the present work we have derived an expression for
sixth-frequency sum rule of the VAC function for a two
component system which at present is not available in
literature. By definition, the sixth sum rule is given as

C65
1

Ni
(
i 51

Ni ^v i lx- ~ t !v i lx- ~ t !& t50

^~v i lx !2&
, ~9!

wherev i lx- (t) is the triple time derivative of thex component
of the velocity of thei th light particle and is given as

v1lx- ~ t !5(
j ,k

21

ml
F ]3U~r !

]r 1lx]r j a]r kb
v j avkb

1
]2U~r !

]r 1x]r ka
S 2

1

ml
D ]U~r !

]r ka
G . ~10!

From the above equation it can be seen that the tagged
ticle is under the interaction of particles with indexj andk,
which can be heavy or light ones. Using Eq.~10! in Eq. ~9!,
and after some lengthy but simple algebra, we get
C6~ml !5
1

ml
S nlE dr g~r !H kBTF12c

ml
2 1

3~12c!

ml
2 1~12c!S 3

mh
2 1

6

mlmh
D G~U1xab

l l !21
4c

ml
2 U1xa

l l U1xb
l l U1ab

l l

1~12c!S 1

ml
2 1

1

mh
2 1

2

mlmh
DU1xa

lh U1xb
lh U1ab

lh J 1
kBT

ml
2 nl

2E E dr1dr2g3~r1 ,r2!

3H @6c~12c!U1xab
l l U2xab

lh 13c2U1xab
l l U2xab

l l 13~12c!2U1xab
lh U2xab

lh #1
c2

ml
2 ~2U1xa

l l U1xb
l l U2ab

l l

14U1xa
l l U2xb

l l U1ab
l l !1~12c!2F S 1

ml
2 1

1

mh
2DU1xa

lh U1xb
lh U2ab

lh 12S 1

ml
2 1

1

mlmh
DU1xa

lh U2xb
lh U1ab

lh G
1c~12c!F S 1

ml
2 1

1

mh
2D ~U1xa

lh U1xb
lh U2ab

l l 1U1xa
l l U1xb

l l U2ab
lh !1

4

ml
2 U1xa

l l U2xb
lh U1ab

l l

12S 1

ml
2 1

1

mlmh
DU1xa

lh U2xb
l l U1ab

lh G2F c2

ml
2 U1xa

l l U2xb
l l U12ab

l l 1
~12c!2

mh
2 U1xa

lh U2xb
lh U12ab

hh
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1
c~12c!

mlmh
~U1xa

l l U2xb
lh U12ab

lh 1U1xa
lh U2xb

l l U12ab
l l !G J 1

1

ml
2 nl

3E E E dr1dr2dr3g4~r1 ,r2 ,r3!

3@c3U1xa
l l U2xb

l l U3ab
l l 1c2~12c!~U1xa

l l U2xb
l l U3ab

lh 1U1xa
l l U2xb

lh U3ab
l l 1U1xa

lh U2xb
l l U3ab

l l !

1c~12c!2~U1xa
l l U2xb

lh U3ab
lh 1U1xa

lh U2xb
l l U3ab

lh 1U1xa
lh U2xb

lh U3ab
l l !1~12c!3U1xa

lh U2xb
lh U3ab

lh # D . ~11!

In deriving Eq.~11!, the interactions between the two species are assumed to be different, therefore it represents a
expression for any two-component system. In the last term of Eq.~11!, g4(r1 ,r2 ,r3) is the static quadruplet correlatio
function. Subscripts 2, 12, and 3 onU represent that the argument of the potentialU(r 1) is changed tor 2 , r 12 (5ur1
2r2u), and r 3 , respectively. The superscripts onU denote whether the interaction involved is between light-light~ll !,
heavy-heavy~hh!, or light-heavy~lh! particles. The expression forC6 involves a derivative of the potential up to third ord
and static correlation functions up to four particles. Therefore, it contains more correlation effects and anharmonicity o
motion thanC2 andC4 . Forc51 andml5mh from Eq.~11! one recovers an expression, obtained by Bansal and Pathak@13#,
for a one-component system.

For the present case of an isotopic liquid, the expression forC6 as a function of mass becomes

C6~ml !5
1

ml
3 H kBTS 12c13~12c!1

3~12c!

K2 1
6~12c!

K D J11S 4c1~12c!F11
1

K2 1
2

KG D J21kBT@6c~12c!13c2

13~12c!2#J31F2c21
~12c!2

K2 1~12c!212c~12c!S 11
1

K2D GJ41F4c212~12c!2S 11
1

K D
12c~12c!S 31

1

K D GJ52Fc21
2c~12c!

K
1

~12c!2

K2 GJ61
1

ml
2 @~12c!313c2~12c!13c~12c!21c3#J7J ,

~12!
n

ra-
the
s
lar

ing

e

on
whereK5mh /ml and the integralsJ1 , J2 , J3 , J4 , J5 , J6 ,
andJ7 are defined as

J15nlE dr g~r !~U1xab!2, ~13!

J25nlE dr g~r !U1xaU1xbU1ab , ~14!

J35nl
2E E dr1dr2g3~r1 ,r2!U1xabU2xab , ~15!

J45nl
2E E dr1dr2g3~r1 ,r2!U1xaU1xbU2ab , ~16!

J55nl
2E E dr1dr2g3~r1 ,r2!U1xaU2xbU1ab , ~17!

J65nl
2E E dr1dr2g3~r1 ,r2!U1xaU2xbU12ab , ~18!

J75nl
3E E E dr1dr2dr3g4~r1 ,r2 ,r3!U1xaU2xbU3ab .

~19!

In the same manner, the expression for the sixth-freque
sum rule of the second particle, i.e.,C6(mh), can be obtained
by interchangingml by mh , c by (12c), andnl by nh .
cy

III. THE EXPRESSION FOR THE DIFFUSION
COEFFICIENT

The general Green-Kubo expression@14# for the self-
diffusion coefficientD is given as

D5
kBT

m E
0

`

C~ t !dt, ~20!

wherekB andT are the Boltzmann constant and the tempe
ture of the system, respectively. The exact evaluation of
VAC function C(t) is not feasible except for simple case
and for some models of the fluids. However, at the molecu
level the time correlation function can be obtained us
Mori’s equation,

dC~ t !

dt
1E

0

`

C~ t2t8!M1~ t8!dt850, ~21!

where M1(t) is the first-order memory function. From th
method of derivation of Eq.~21!, it follows that M1(t) fol-
lows a similar equation. This provides a continued fracti
representation forC̃(v) given as

C̃~v!52
C~0!

v1M̃1~v!
, ~22!

with
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PRE 59 463SELF-DIFFUSION IN AN ISOTOPIC FLUID
M̃n~v!52
dn

v1M̃n11~v!
, n51,2,3, . . . , ~23!

whereC̃(v) is the Fourier-Laplace transform ofC(t) and is
defined as

C̃~v!5iE
0

`

e~ivt !C~ t !dt. ~24!

In Eq. ~23!, dn5Mn(0) are initial values of thenth stage of
the memory functionMn(t) and are called Mori coefficients
These Mori coefficients are directly related to the frequen
sum rules of the VAC function and expressions for a few
them are given as

d15C2 , ~25!

d25
C4

C2
2C2 , ~26!

and

d35
C6 /C22~C4 /C2!2

d2
. ~27!

The frequency spectrumf (v) of the time correlation
function ~TCF!, C(t), is defined as

f ~v!52C̃9~v!52E
0

`

cos~vt !C~ t !dt, ~28!

whereC̃9(v) is the imaginary part ofC̃(v). The time evo-
lution of C(t) can be determined from

C~ t !5
1

p E
0

`

cos~vt ! f ~v!dv. ~29!

In order to calculateC̃9(v) and henceC(t), it is necessary
to truncate the hierarchy of Eq.~22!. The expression forD as
obtained from Eqs.~20! and ~28! is

D5
kBT

m
C9~0!5

kBT

2m
f ~0!. ~30!

It is difficult to deal with the higher-order memory function
therefore we restrict ourselves to the first- or second-st
memory function. Presently, we truncate the hierarchy o
continued fraction at the second stage. The expression
obtained for the frequency spectrum is given as

f ~v!5
2d1M̃29~v!

@v22d11vM̃28~v!#21@vM̃29~v!#2
. ~31!

To calculatef (v) and henceC(t), it is necessary to have
workable expression for the memory function. Although w
have a microscopic expression for the memory function,
calculation is not simple as it amounts to a solution o
many-body problem. Therefore, several phenomenolog
forms @15# of the memory function have been proposed
y
f

e
a
us

s

al

the literature@14#. Here, we use the phenomenological for
of the memory function given by

M2~ t !5a exp~2b2t2/2!. ~32!

The parametersa andb can be determined by requiring tha
the first two coefficients in the expansion of the above eq
tion and that of the exact memory function are the sam
This implies thata5d2 andb5Ad3 . Using Eqs.~32!, ~31!,
and ~29! in Eq. ~30! we obtain

D5
kBT

m S p

2 D 1/2 d2

d1Ad3

. ~33!

This expression will be used, for the first time, to study t
mass dependence of the self-diffusion coefficient in an i
topic fluid. In an earlier study, the Mori coefficients up
second order were used and the expression used to calc
the self-diffusion coefficient was

D5
kBT

m S 2

p D 1/2 Ad2

d1
. ~34!

IV. ANALYTICAL EXPRESSION FOR MASS
DEPENDENCE

For a two-component system where two species di
only in their masses and interact via the same potentia
becomes desirable to study the mass dependence of the
diffusion coefficient of two species analytically. In suc
cases the Mori coefficients can be written as a function
masses, and expression~33! of the diffusion coefficient may
be rewritten as

D~mi !5
kBT

mi
S p

2 D 1/2 d2~mi !

d1~mi !Ad3~mi !
, ~35!

wheremi may be the mass of light or heavy particles. Th
gives the ratio of the self-diffusion coefficients of the pa
ticles of massmh andml as

D~mh!

D~ml !
5

ml

mh

d1~ml !d2~mh!

d1~mh!d2~ml !
S d3~ml !

d3~mh! D
1/2

. ~36!

From the above equation it is obvious that the ratio of
two diffusion coefficients is independent of the function
form of the memory function. We assume that the syst
under consideration consists of only one heavy particle in
host fluid or that the concentration of heavy particles is
small that one can neglect their interaction. For such a s
tem, expressions for the sum rules are to be modified.
expression for the second frequency sum rule of such a
tem is the same as that given by Eq.~4!. From Eqs.~5! and
~12! with (12c)50 and assuming that only two-body term
are taken into account, we obtain expressions for the fou
and sixth sum rules:

C4~ml !5
2I 1

ml
2 ~37!

and



n
ua

a
re
n
se

p
r
it
ef
w
r
o

a

.

e
v

the
ent
of

a
um
nd

the
uid
via

are

ec-
po-

on
the
e
by

t
le

re-
uss

.,

th
in
tio

vy

elf-
ts,
nd
the

in

d,
e-
-

nt
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C6~ml !5
1

ml
3 ~12kBTJ114J2!. ~38!

Similar expressions forC4(mh) andC6(mh) are obtained:

C4~mh!5
I 1~11K !

ml
2K2 ~39!

and

C6~mh!5
1

ml
3K

~3J1kBT1J2!~111/K !2. ~40!

In writing the above two equations, we have again taken o
the two-body contribution into account. Using these eq
tions and Eq.~27!, we found that

d3~mh!

d3~ml !
5

d2~ml !

d2~mh! S 11K

2K D 2

. ~41!

This is an approximate solution based on truncation of
three-body and higher-body terms. The deviations of this
sult from those obtained including higher-order contributio
is expected to be small, as is demonstrated in the next
tion. Using this value ofd3(ml)/d3(mh), and noting that
mld1(ml)5mhd1(mh), Eq. ~36! becomes

D~mh!

D~ml !
5S d2~mh!

d2~ml !
D 3/2S 2K

11K D . ~42!

This expression has been obtained using sum rules u
sixth order, however the sixth sum rule does not appea
the final expression~42!. This is an important result as
proves that the mass dependence of the self-diffusion co
cient is solely determined by lower-order sum rules. Ho
ever, this expression is not the same as that derived earlie
using the sum rules up to fourth order. The expression
tained in that case is

D~mh!

D~ml !
5S d2~mh!

d2~ml !
D 1/2

. ~43!

Now, if we use the approximation employed and tested in
earlier work@7#, which is given as

d2~mh!

d2~ml !
5S 11K

2K D , ~44!

both the equations, i.e., Eqs.~42! and ~43!, yield

D~mh!

D~ml !
5S 11K

2K D 1/2

5A1/2S 11
ml

mh
D 1/2

. ~45!

Thus the two expressions finally provide the same result
From Eq. ~45! it is clear that for ml5mh , D(ml)

5D(mh). It may be noted that formh@ml , the diffusion
coefficient of heavy particles becomesD(mh)5D(ml)/&.
HenceD(ml)/A2 could be thought of as the minimum valu
of the self-diffusion coefficient that a heavy particle can ha
in the host fluid.
ly
-

ll
-

s
c-

to
in

fi-
-
by
b-

n

e

In the next section we have evaluated numerically
frequency sum rules and hence the self-diffusion coeffici
for an isotopic fluid with varying mass and mole fraction
the isotopes.

V. RESULTS AND DISCUSSION

To calculate the self-diffusion coefficient of a particle in
fluid, we need to evaluate expressions of frequency s
rules numerically. For such a purpose, pair potential a
static correlation functions are required as inputs. In
present work the calculations are done for an isotopic fl
by assuming that all particles of the fluid are interacting
the same Lennard-Jones pair potential. The calculations
performed atT* 50.90 andn* 50.75, withT* 5kBT/e and
n* 5ns3 as the reduced temperature and density, resp
tively. e ands are the parameters of the Lennard-Jones
tential. The static pair correlation function,g(r ), is obtained
using the method of Sung and Chandler@16# based on the
optimized cluster theory. The static pair correlation functi
g(r ) thus obtained is found to be in good agreement with
MD data. The triplet correlation function involved in th
expressions of the frequency sum rules is approximated
using a superposition approximation@17# and the quadruple
correlation function involved in the sixth-frequency sum ru
is approximated~see the Appendix! to the pair correlation
function by using a decoupling approximation@18#. The nu-
merical integration involved in the expressions of the f
quency sum rules has been performed using the Ga
quadrature method.

A. Mori’s coefficients

First-, second-, and third-order Mori coefficients, i.e.,d1 ,
d2 , andd3 , have been determined from Eqs.~25!, ~26!, and
~27!. The calculated values of Mori’s coefficients, i.e
d1(mh), d2(mh), andd3(mh), along with MD data for heavy
particles are given in Table I. Our values ofd1(mh),
d2(mh), andd3(mh) are found to be in good agreement wi
the MD data@4,5,11#, as evidenced by their values given
Table I. From Table I it can be seen that the ra
mhd1(mh)/ml is independent of the value of (mh /ml) as
predicted in@5#. It is found that, initially, the increase in
mass ratio (mh /ml) results in a decrease ofd2(mh) and
d3(mh). However, when the ratio of the masses of the hea
to light particles is high,d2(mh) andd3(mh) become almost
independent of the mass of the particle. Since the s
diffusion coefficient directly depends on these coefficien
the larger mass ratio diffusion coefficient should depe
weakly upon the mass of the particle. In order to check
validity of Eq. ~41!, we have calculatedd3(mh) from this
equation by using our numerical values ofd2(ml), d2(mh),
and d3(ml). The results obtained are given in Table I,
parentheses, for mass ratios 4 and 16. The values ofd3(mh)
predicted from Eq.~41! are close to simulation values an
which implies that the effect of the inclusion of the thre
body contribution in the sum rules is quite small. This im
plies that a binary collision approximation may be sufficie
to study the mass dependence in an isotopic system.
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TABLE I. Values of Mori’s coefficients, in units ofe/(ms2) for different values ofmh /ml . MD repre-
sents molecular-dynamics data@4,5,11#. The values ofd3(mh) given in parentheses are predictions of E
~41!.

mh

ml d1(mh) d2(mh) d3(mh)
d1(mh)

MD
d2(mh)

MD
d3(mh)

MD

1 224.369 660.460 2238.890 231.90 684.80 2145676
4 56.092 443.520 1340.300 56.70 466.0 1240630

~1302.340!
10 22.437 400.135 1177.787 22.50 398.5
16 14.023 389.288 1138.679 14.5 417.9 1080695

~1072.030!
20 11.220 385.672 1125.799 11.2 396.8
30 7.4789 380.852 1108.752 7.5 391.0
40 5.610 378.441 1100.284 5.7 386.2
50 4.480 376.995 1095.222 4.5 390.9
y

I.
-
fo
ffi
ta
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e
to
e
-
e

.,
e
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f-
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tio
t
D

e

-
y
e
d
un-
y
-
-

f the
ed

pec-
B. Self-diffusion coefficient

Self-diffusion coefficients of light particles and heav
particles are calculated from Eqs.~33! and ~34! using the
numerical values of the Mori coefficients given in Table
The values ofD* (mh)5Ds(e/mh)1/2 so obtained are re
ported in Table II and MD data are also given there
comparison. Calculated values of the self-diffusion coe
cients are found to be in good agreement with MD da
From Table II we can see that inclusion of higher-order M
coefficients results in a decrease in the value of the s
diffusion coefficient of heavy particles. This may be due
the presence of more correlation effects, which com
throughd3 . To see the effect of the inclusion of the third
order Mori coefficient on the diffusion coefficient, we hav
plotted the ratio of two diffusion coefficient, i.e
D* (mh)/D* (ml), in Fig. 1. The solid line represents th
results of Eq.~33! and the dashed line represents the res
of Eq. ~34!. At initial stages, the ratio of the diffusion coe
ficient D* (mh)/D* (ml) decreases with the mass ratio a
after, say,mh /ml525 it becomes almost independent of t
mass ratio. To compare our results with computer simula
data, we have also plotted MSD~mean-square displacemen!
MD data and MD data in Fig. 1. Solid circles represent MS
MD data and solid square represent MD data, respectiv
From Fig. 1 it can be seen that the results of Eq.~33! that

TABLE II. Self-diffusion coefficient of heavy particle for dif-
ferent values ofmh /ml . D2* (mh) represents the results of Eq.~34!
and D1* (mh) are results of Eq.~33!. MD1 @4# and MD2 @5,11#
represent molecular dynamics data.

mh

ml

D* (mh)
MD1

D* (mh)
MD2 D2* (mh) D1* (mh)

1 0.0810 0.072 0.0822 0.0701
4 0.0683 0.066 0.0674 0.0609

10 0.0637 0.0640 0.0586
16 0.0633 0.060 0.0631 0.058
20 0.0639 0.0628 0.0578
30 0.0631 0.0624 0.0575
40 0.0619 0.0622 0.0573
50 0.0631 0.06214 0.05726
r
-
.
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ly.

involve d3 are closer to MD data than the results of Eq.~34!.
Further, the inclusion ofd3 does not affect the earlier pre
diction @7# that the self-diffusion coefficient of very heav
particles~for mass ratio>25! has a value which cannot b
less thanA1/2 times the self-diffusion coefficient of the flui
particle at a given temperature and density. This can be
derstood from Eq.~45!, where we have shown analyticall
that for mh@ml the self-diffusion coefficient of heavy par
ticles isA1/2 times the self-diffusion coefficient of light par
ticles.

C. Effect of concentration on mass dependence of diffusion
coefficient

The effect of concentration on the mass dependence o
diffusion coefficients of light and heavy particles is analyz

FIG. 1. Variation of diffusion ratio@D* (mh)/D* (ml)# with
mass ratio (mh /ml) for T* 590 andn* 50.75.~a! Solid line is the
result of Eq.~33! and dashed line is the result of Eq.~34!. Solid
circles and solid squares represent MD MSD and MD data, res
tively.
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by varying the concentration of light particles. Self-diffusio
coefficients of light and heavy particles are obtained fr
Eq. ~33! for different values ofc, which is the concentration
of light particles. Results obtained are reported in Table
Results corresponding toc;1 are for a system which ha
only one heavy particle in the fluid so that the interacti
between the heavy-heavy particles is zero. From Table I
can be seen that the self-diffusion coefficient of both p
ticles increases with an increase in the mole fraction of li
particles in the system. This may be because light parti
provide less resistance to the movement of other parti
~light or heavy! than do the heavier particles. From Table
it can also be seen that for larger mass ratio the diffus
coefficient of heavy particles is more influenced by the c
centration as compared to the diffusion coefficient of lig
particles. To show explicitly the effect of concentration
the mass dependence of the self-diffusion coefficient,
have plotted the ratio of the self-diffusion coefficient of
light particle to that of a heavy particle, i.e

FIG. 2. Variation of diffusion@D* (ml)/D* (mh)# with concen-
tration c of the fluid for different mass ratio~K!. Solid line for K
524; dashed line forK516; dotted line forK58; short dashed
line for K54; short dotted line forK52.
.

it
r-
t
s
s

n
-
t

e

D* (ml)/D* (mh), as a function of concentration of light pa
ticles for different mass ratios in Fig. 2. The curves fro
bottom to top in the figure correspond tomh /ml52, 4, 8, 16,
and 24, respectively. From Fig. 2 it can be seen that
diffusion ratio decreases as the concentration of light p
ticles increases. This decrease is greater for larger mass
This shows that an increase in the diffusion coefficient
heavy particles with an increase in the concentration of li
particles is greater compared to the diffusion of light p
ticles. The above study shows a considerable effect of a m
fraction on the mass dependence of a diffusion coefficien

D. Effect of density and temperature on mass dependence
of diffusion coefficient

The effect of temperature and density on the mass dep
dence of self-diffusion is also studied. First, the temperat
of the system is kept constant, i.e.,T* 51.23, and the density
is varied fromn* 50.20– 0.80, in a step of 0.10, while th
mass ratiomh /ml52 is also fixed. Results obtained for th
self-diffusion coefficients and their ratios are reported
Table IV. The diffusion ratio decreases by about 4.5%
going from n* 50.20 to 0.80 for the results obtained fro
Eq. ~33! and this decrease is about 1.6% for the results
tained from Eq.~34!. This shows a weak density dependen
of the mass dependence of the self-diffusion coefficie
Here, it may be noted that even at low density (n* 50.2) the
ratio of the self-diffusion coefficients is far from the classic
gas limiting result of (mh /ml)

1/2. The reason for this depar
ture is that our system contains only one heavy particle
the second case, the density is kept constant, i.e.,n* 50.50,
and the temperature is varied fromT* 50.90– 4.50 for a
fixed mass ratio, i.e.,mh /ml52. The self-diffusion coeffi-
cients and their ratio obtained so far are given in Table
The increase in the diffusion ratio is found to increase
1.35% in going fromT* 50.9 to 4.5 for the results obtaine
from Eq.~33!, and for the results from Eq.~34! this increase
is about 0.52%. This shows that the mass dependence o
diffusion coefficient on temperature is very weak or neg
gible. Thus it is found that the inclusion ofd3 in the calcu-
lations does not change the conclusion that the effect of d
sity and temperature on the mass dependence of diffusio
almost negligible, as is evident from Eq.~45!.
of

9
4
9
4
0
5
1
7

TABLE III. Self-diffusion coefficients of light and heavy particles for different value of concentration
light particles and for different values of mass ratioK (5mh /ml).

Concentration

Mass ratio

K52 K58 K516 K524
D* (ml) D* (mh) D* (ml) D* (mh) D* (ml) D* (mh) D* (ml) D* (mh)

0.3 0.060 0.052 0.050 0.027 0.048 0.021 0.048 0.01
0.4 0.61 0.054 0.053 0.031 0.051 0.025 0.051 0.02
0.5 0.063 0.055 0.056 0.035 0.054 0.030 0.054 0.02
0.6 0.064 0.057 0.058 0.040 0.057 0.035 0.057 0.03
0.7 0.065 0.058 0.061 0.044 0.060 0.041 0.060 0.04
0.8 0.067 0.060 0.064 0.050 0.063 0.046 0.063 0.04
0.9 0.068 0.062 0.067 0.054 0.067 0.052 0.066 0.05

;1.0 0.070 0.064 0.070 0.060 0.070 0.058 0.070 0.05
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VI. SUMMARY AND CONCLUSIONS

In the present paper we have studied the mass depend
of the self-diffusion coefficient of heavy particles in an is
topic fluid. In this study we have used third-order Mori c
efficient d3 , which was not included in the earlier stud
Determination ofd3 requires frequency sum rules of VAC
function up to sixth order, hence we derived an express
for the sixth sum rule of the VAC function for a two
component system. The static pair correlation functiong(r )
required for calculations is obtained by using Sung a
Chandler’s method based upon optimized cluster theory.
frequency sum rules, up to sixth order, are numerica
evaluated for an isotropic fluid in which all particles are i
teracting via the same LJ potential and the numerical va
of the sum rules so obtained are used to evaluate the M
coefficients. Self-diffusion coefficient of heavy and light pa
ticles are evaluated within Mori’s memory-function forma
ism using the Gaussian memory function. The mole fract
and thermodynamic state dependence of the mass de
dence of the self-diffusion coefficient are also studied.

Our values of the Mori coefficients and the self-diffusio
coefficient, for a system consisting of a single heavy part
in the fluid of light particles, are found to be in good agre
ment with MD results. It has also been found that the ratio
the self-diffusion coefficients of a heavy particle to those o
light particle assumes a constant value after mass ratio>25
at any density and temperature, which is in agreement w
earlier predictions and supported by the MD simulatio
Thus it is concluded that higher-order sum rules have
significant effect on the mass dependence of the s
diffusion coefficient. It is also found that the mole fraction
the light particles has a significant effect on the mass dep
dence of the self-diffusion coefficient, whereas the den
and temperature dependence of mass dependence is
weak.

TABLE IV. Values of self-diffusion coefficients of light and
heavy particles for different values ofn* at T* 51.23 for mh /ml

52.

n* D2* (ml) D1* (ml) D2* (mh) D1* (mh)

D2* ~ml!

D2* ~mh!

D1* ~ml!

D1* ~mh!

0.20 0.532 0.476 0.462 0.417 1.149 1.14
0.30 0.357 0.316 0.311 0.279 1.146 1.13
0.40 0.270 0.236 0.236 0.210 1.143 1.12
0.50 0.210 0.181 0.184 0.162 1.140 1.11
0.80 0.094 0.079 0.083 0.073 1.130 1.08
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APPENDIX

Since very little information is available about the quadr
plet correlation function, we simplify it using the low-orde
decoupling approximation as given below. The express
for the quadruplet contribution toC6 is

C645
n3

m3 E E E dr1dr2dr3g4~r 1 ,r 2 ,r 3!U1xaU2xbU3ab .

~A1!

This can be equivalently written as

C645
1

m3 (
kÞ lÞmÞ1

K ]2U1k

]r 1x]r 1a

]2U1l

]r 1x]r 1b

]2U1m

]r 1a]r 1b
L .

~A2!

Since there is no direct coupling between the atoms labe
by k, l, andm, we approximate Eq.~A2! as

C645
1

ml
3 (

k,l ,m
K ]2U1k

]r 1x
2 L K ]2U1l

]r 1x
2 L K ]2U1m

]r 1x
2 L . ~A3!

It may be noted that once the correlation betweenk, l, andm
is neglected, onlya5b5x contributes in Eq.~A3!. Finally,
Eq. ~A3! can be written as

C645S 1

m3 (
kÞ1

K ]2U1k

]r 1x
2 L D 3

5~C2!3. ~A4!

TABLE V. Values of self-diffusion coefficients of light and
heavy particles for different values ofT* with n* 50.50 for
mh /ml52.

T* D2* (ml) D1* (ml) D2* (mh) D1* (mh)

D2* ~ml!

D2* ~mh!

D1* ~ml!

D1* ~mh!

0.90 0.143 0.130 0.125 0.117 1.138 1.11
1.23 0.210 0.181 0.184 0.162 1.140 1.11
1.90 0.320 0.270 0.280 0.241 1.142 1.12
2.50 0.409 0.340 0.358 0.303 1.143 1.12
3.46 0.540 0.431 0.472 0.394 1.144 1.12
4.50 0.673 0.546 0.588 0.484 1.144 1.12
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