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Self-diffusion in an isotopic fluid
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An expression for the sixth-frequency sum rule of the velocity correlation function is derived for a two-
component system. This, along with lower-order frequency sum rules and Mori’'s memory-function formalism,
have been used to study the mass dependence of self-diffusion in an isotopic Lennard-Jones fluid. The effect
of inclusion of the sixth-frequency sum rule on the mass dependence of a self-diffusion coefficient of a single
heavy particle in a fluid has been studied explicitly. It is found that the ratio of the self-diffusion coefficient of
a heavy patrticle to that of a fluid particle is not affected by the inclusion of the sixth-order sum rule. It is also
found that for very high mass ratios the self-diffusion coefficients of a heavy particle can have a minimum
value which is 1/2 times the self-diffusion coefficient of fluid particles. The mole fraction dependence and
thermodynamic state dependence of the mass dependence of self-diffusion of a heavy patrticle in the host fluid
are also studied.S1063-651X98)15812-9

PACS numbd(ps): 66.10—x, 66.30.Hs

[. INTRODUCTION drawn[7] earlier using sum rules up to fourth order. Thus, it
is confirmed that the mass dependence comes only from the
In recent years there has been a keen interest to studgwer-order Mori coefficients. We have also studied the con-
independently the effect of variation in mass, size, and intercentration and thermodynamic state dependence of the mass
action between the particles of a binary fluid on transpordependence of the self-diffusion coefficient.
phenomena. Such investigations have been possible only due The paper is organized as follows. Expressions for the
to computer simulations and theoretical studies in whicHrequency sum rules of the VAC function as a function of
these parameters can be varied independent of each oth8#ass and concentration are derived in Sec. Il, and an expres-
For this purpose Lennard-Jones fluids are found to be th@&on for the self-diffusion coefficient is given in Sec. IIl. In
most suitable systems because of their simplicity. The mas3€¢- [V, an analytical result for the mass dependence of the
dependence of the self-diffusion coefficient in a binary fluidSelf-diffusion coefficient is obtained. Results obtained for
mixture has been studied through computer simulationd/ori’s coefficients and the self-diffusion coefficient as a

[1-6]. The computer simulations have shown a weak masfunction of mass, concentration, temperature, and density are
dependence of the self-diffusion coefficient, which is indiscussed in Sec. V. Finally, the work is concluded in Sec.

agreement with the experimental observations. Theoreticafl-
attempts[4—10] made within Mori’'s memory-function for-

malism have also proven weak mass dependence of the self- Il. FREQUENCY SUM RULES
diffusion coefficient. In one such attempt, it was arg{ied|

that the weak mass dependence of the self-diffusion coeffi- We consider an'lsotoplc fluid W'tN.: N+ '\.IZ number Of.
cient comes from the higher-order Mori coefficieftslated particles, wherd, is the number of light particles of atomic

to sum rules Therefore, knowledge of higher-order sum massm andN, is the number of heavy particles of atomic
massmy,, such thatm,,/m,> 1. Expressions for the normal-

rules is very much desirable. However, the expressions fo ; : )
the sum rules of the velocity autocorrelatiBfAC) function |z_ed velocity autocorrelation functions for such a system are
Jiven as

for a two-component system are presently known up t
fourth order only. There exist some estimates of the higher- 1 M (i (Dvi(0))
order sum rules obtained from computer simulatifBd 1] Clt,m)=— >, WU
but they are not sufficient to study the effect of higher-order Ny =1 kgT/m
sum rules on the mass dependence of the self-diffusion co-

efficient. In the present work, we derive an analytical expresfind

sion for the sixth-frequency sum rule of the VAC function N,

for a two-component system, in general, in which interac- 1 (Vix(Dvix(0))

_ : , : C(t,my) = > 1, )

tions, size of particles, and masses of the particles may be N, =1 kg T/my,

varied independently. This expression for the sum rule,

within Mori’'s memory-function formalism[12], has been wherev;,(t) is thex Cartesian component of the velocity of
used to study the mass dependence of the self-diffusion cdhe ith particle at a time. Angular brackets in the above
efficient in an isotopic fluid. It is found that the inclusion of equations represent the ensemble average. The short time
the sixth sum rule does not alter the qualitative conclusiorexpansion of the VAC function is

@

1063-651X/99/561)/460(9)/$15.00 PRE 59 460 ©1999 The American Physical Society



PRE 59 SELF-DIFFUSION IN AN ISOTOPIC FLUID 461

t2 t4 t6 dZU(rl)
C(t,m)=1—Cy(m) oy +Cy(m) 77— Co(m) &7+, LB gy dry,”

6!
)

o r, andrz are Cartesian componentsrofThe subscript 2 on
where the coefficients<C,(m), C4(m), and Ce¢(m) are  yin Eq. (7) implies that the argument of the pair potential,
second-, fourth-, and sixth-frequency sum rules of the VACy (r,), is changed front; tor,. In Eq.(7), gs(r;.r,) rep-
function of the species of mass respectively. In the present resents the static triplet correlation function. In the derivation
work we will use Mori's memory-function formalism and of these frequency sum rules, it is assumed that the particles
short time properties of the VAC function to study the effect of the system interact via the same interaction potential so as
of variation in the mass and concentration of particles on thgy represent an isotopic fluid. Here it may be noted that the
self-diffusion coefficient. Therefore, first of all we will ex- terms in Eq.(5) with ¢ or c2 as the multiplicator are due to

amine some of the exact properties, namely the frequenciteraction between light-light particles, and the terms in-

sions for the second and fourth sum rules have already begferaction between light-heavy particles. Expressions for

®

derived([7,8] and are given as C,(m,) andC4(m;,) can be obtained from Eq$4) and (5)
n by interchangingn, by my,, c by (1—c), and replacingn, by
Co(my) = — f drig(ri)Uayy (4)  Dn- . .
m In the present work we have derived an expression for the

sixth-frequency sum rule of the VAC function for a two-

and component system which at present is not available in the
I m, ) literature. By definition, the sixth sum rule is given as
Ca(m)= 5| 2c+(1-c)| 1+ |1+ [c®+(1-c)? |
m hid co by hOuf ) ©
+2c(1-0)], 5 = ((0in)%) ’
wherel, andl, are integrals involving pair distribution func- wherey!" () is the triple time derivative of the component
tionsg(r) and pair potential(r), given as of the velocity of theith light particle and is given as
3
= drg(r)(U,? © y s “L[ Vo
Ullx(t) % m, arllxarjaarkﬁ Ulavkﬁ
and J2U(r) 1) au(r)
— | = . (10
2 &rlxﬁrka m &rka
l2=n; drydr,gs(ry,r2)UixeUoxe - (7

From the above equation it can be seen that the tagged par-
In these equations; andc(=N;/N) are the number density ticle is under the interaction of particles with indpandKk,
and mole fraction of light particles and we have used thewhich can be heavy or light ones. Using Ef0) in Eq. (9),
notation and after some lengthy but simple algebra, we get

12c N 3(1-c¢) L1
m? m? (1=¢)

C6(m|):i n|fdr g(r); kgT i+i (U” )2+ﬁull u' oyl
m| m% mI mh 1xap m|2 Ixa ™~ 1xB™~ lap

+(1-¢) i+i+i uh ulh ulh +|(B—Tn2ffdr1drzg3(r1 ry)
m|2 mﬁ mym;, Ixa™~ 1xB™~ laB m|2 | d

C2
X [ [6C(1—C)UYqpUbas+ 362UY, 0 sUb st 3(1—C)2U T sU N s+ p~ (2UY, U, 5U5

44Ul UpypUlap) +(1-0)2 UTeUTigU st 2

_+i i_’_i Ulh Ulh U|h
m|2 mﬁ m|2 mm,,| - e~ 2x8> 1ap

4
th y(lh Il ol qyh o ydh gl
(UixeY1xgY 2051 UixaY1xgY2ap) + m_|2 UixeU2xgY1ap

c? (1-c)?
UII UII UII + Ulh Ulh Uhh
mfl IXa ™~ 2xB™~ 12aB mh2 1Xa ™~ 2xB™~ 12aB

+c(l-c)

_+_
my - my

1

+_
w2

Ih I Ih
+2 UlXaUZXBU1aﬁ
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N c(l-c)

m;my, (UlXaUZXBU 12a,8+ leaUZXBUlZQB)

1
}+azn|3fffdrldrzdr3g4(r1,r2,r3)

X[ U], U XBUSaB+C2(1 c)(U},,U XBU3aB+UlXaU2XBU3a/3+U1Xa X,BUSaB)

+c(1-¢)3(UY,,U ZXBU3aB+U1xaU XBUSaB+UlXaU2Xﬁ 3a,8)+(1 c)2U}), V! 2xB 3a/5’] (12)

In deriving Eq.(11), the interactions between the two species are assumed to be different, therefore it represents a general
expression for any two-component system. In the last term of (EL, g(rq,r»,r3) is the static quadruplet correlation
function. Subscripts 2, 12, and 3 du represent that the argument of the potentiglr;) is changed tar,, rqy, (=|r;
—r1,|), andrg, respectively. The superscripts dh denote whether the interaction involved is between light-light
heavy-heavy(hh), or light-heavy(lh) particles. The expression f@g involves a derivative of the potential up to third order
and static correlation functions up to four particles. Therefore, it contains more correlation effects and anharmonicity of atomic
motion thanC, andC,. Forc=1 andm,=m,, from Eqg.(11) one recovers an expression, obtained by Bansal and PitBhk
for a one-component system.

For the present case of an isotopic liquid, the expressioCfoas a function of mass becomes

1 3(1-c) 6(1-c) 1 )
Ce(m|)— kgT| 12c+3(1—c)+ K2 + K J;+|4c+(1-c) 1+F+R J,+kgT[6c(1—cC)+3cC
2 2 (1-c)® 2 1 2
+3(1—c¢)“]Js+| 2c°+ K2 +(1-c)*+2c(1—-c)| 1+~ 2| |[Jat|4c +2(1-c)? TR

1 ,. 2¢(1-c) (1-c)? 1 s oo .
+2¢(1-c)| 3+ =] |Js—|c°+ + >—|Jgt —= [(1—C)°+3c“(1l—c)+3c(l—c)*+c°]Iy7,
K K K m
(12
|
whereK=m,/m, and the integrals;, J,, J3, J4, Js, Js, lll. THE EXPRESSION FOR THE DIFFUSION
andJ; are defined as COEFFICIENT
The general Green-Kubo expressipt4] for the self-
Jl:nlf dr g(r)(Ulmﬁ)z, (13  diffusion coefficientD is given as
kgT [
D=—| C(t)dt, (20
J2=n|f dr g(r)U 1 U1xgU1ap, (14 m Jo

wherekg andT are the Boltzmann constant and the tempera-

J :nZJ f dr,droga(ry,r2)UssegVoxas (15)  ture of the system, respectively. The exact evaluation of the
s PR 2 g 2xap VAC function C(t) is not feasible except for simple cases

and for some models of the fluids. However, at the molecular

level the time correlation function can be obtained using

dc(t) (-
J5=n|2ffdrldrzgg(rl,rz)leaUZXﬁulaB, 17 T+Jo C(t—t")M(t")dt’ =0, (21)

o where M (t) is the first-order memory function. From the
Je=ni f f dridrags(ra,ra)UsxeUagUioeg,  (18) method of derivation of Eq(21), it follows that M(t) fol-
lows a similar equation. This provides a continued fraction

3 representation fo€(w) given as
J7=n J J f drdrodr3ga(ri,ra,r3)UixaUoygUsag-
(19 ~ C(0)
Clo)=———7—, (22)
In the same manner, the expression for the sixth-frequency o+M;(w)
sum rule of the second particle, i.€g(my,), can be obtained

by interchangingn, by my,, ¢ by (1—c), andn, by n,,. with
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5 5 the literature[14]. Here, we use the phenomenological form
My(w)=— ~—n n=123..., (23 of the memory function given by
0+Mpi(w) 2.2
M,(t)=a exp(—bt“/2). (32

whereC(w) is the Fourier-Laplace transform 6f(t) and is

defined as The parametera andb can be determined by requiring that

the first two coefficients in the expansion of the above equa-
_ o tion and that of the exact memory function are the same.
C(w)zbf etlC(t)dt. (24 This implies thata= 8, andb=y8;. Using Eqs.(32), (31),
0 and(29) in Eqg. (30) we obtain

In Eq. (23), 5,=M,(0) are initial values of thaith stage of

1/2
the memory functiorM ,(t) and are called Mori coefficients. D= keT (Z) L (33)
These Mori coefficients are directly related to the frequency m \2 51\/33
sum rules of the VAC function and expressions for a few of
them are given as This expression will be used, for the first time, to study the
mass dependence of the self-diffusion coefficient in an iso-
6,=C,, (25  topic fluid. In an earlier study, the Mori coefficients up to
second order were used and the expression used to calculate
C, the self-diffusion coefficient was
%=¢.~Ca (26)
2 kT ( 2)1’2 V&,
and D=7 8 (34)
2
53:C6/C2 (C4/Ca) _ (27) IV. ANALYTICAL EXPRESSION FOR MASS
52 DEPENDENCE
The frequency spectrunfi(w) of the time correlation For a two-component system where two species differ
function (TCF), C(t), is defined as only in their masses and interact via the same potential, it

becomes desirable to study the mass dependence of the self-
PV diffusion coefficient of two species analytically. In such
flw)=2C (‘”)_ZJO codwt)C(t)dt, (29 cases the Mori coefficients can be written as a function of
masses, and expressi@8) of the diffusion coefficient may
whereC"(w) is the imaginary part o€(w). The time evo- € rewritten as
lution of C(t) can be determined from

kBT ( ’77) 2 52( mi)
2

o D(m)=—— —_—
C(t)= % fo coq wt)f(w)dw. (29 m o1(my)\ d3(m;)

wherem; may be the mass of light or heavy particles. This
In order to calculat€”(w) and henceC(t), it is necessary 9ives the ratio of the self-diffusion coefficients of the par-
to truncate the hierarchy of E€22). The expression fob as  ticles of massn, andm; as
obtained from Eqs(20) and(28) is
020 and (28) D(my) My Sy(m)8y(my) ( 5a(m)

D(m)) — my, &y(my) &x(my) | 85(my)

From the above equation it is obvious that the ratio of the

It is difficult to deal with the higher-order memory function, WO diffusion coefficients i_s independent of the functional

therefore we restrict ourselves to the first- or second-stagl®rm of the memory function. We assume that the system
memory function. Presently, we truncate the hierarchy of ainder consideration consists of only one heavy particle in the
continued fraction at the second stage. The expression thist fluid or that the concentration of heavy particles is so

(35

1/2
. kBT ” - kBT ) ' (36)
D_WC (O)—ﬁf(O). (30)

obtained for the frequency spectrum is given as small that one can neglect their interaction. For such a sys-
tem, expressions for the sum rules are to be modified. The
25,M(w) exprgssion for the second. frequency sum rule of such a sys-
flw)= 172 . (31 temis the same as that given by E4). From Egs.(5) and
[w?—8;+ wMé(w)]2+[wmg(w)]2 (12) with (1—c)=0 and assuming that only two-body terms

are taken into account, we obtain expressions for the fourth
To calculatef (w) and henceC(t), it is necessary to have a and sixth sum rules:
workable expression for the memory function. Although we
have a microscopic expression for the memory function, its _ 2
o . . : Cy(m)=— (37)
calculation is not simple as it amounts to a solution of a m;
many-body problem. Therefore, several phenomenological

forms [15] of the memory function have been proposed inand
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In the next section we have evaluated numerically the
Ce(my) = 3 (1KpTJI;+435). (38  frequency sum rules and hence the self-diffusion coefficient
! for an isotopic fluid with varying mass and mole fraction of

Similar expressions fo€,(my,) and C¢(my,) are obtained: the isotopes.
1,(1+K)
Calmn) == 22 (39 V. RESULTS AND DISCUSSION

To calculate the self-diffusion coefficient of a particle in a
fluid, we need to evaluate expressions of frequency sum
1 rules numerically. For such a purpose, pair potential and
CG(mh)=W(3J1kBT+JZ)(1+ 1/K)2, (400  static correlation functions are required as inputs. In the
! present work the calculations are done for an isotopic fluid
y assuming that all particles of the fluid are interacting via
the same Lennard-Jones pair potential. The calculations are
performed aff* =0.90 andn* =0.75, withT* =kgT/e and
n*=no> as the reduced temperature and density, respec-
2 tively. e and o are the parameters of the Lennard-Jones po-
(41  tential. The static pair correlation functiog(r), is obtained
using the method of Sung and Chandl&6] based on the

This is an approximate solution based on truncation of alpptimized cluster theory. The static pair correlation function

three-body and higher-body terms. The deviations of this reg(r) thus obtained is found to be in good agreement with the

sult from those obtained including higher-order contributionsMD data. The triplet correlation function involved in the

is expected to be small, as is demonstrated in the next seexpressions of the frequency sum rules is approximated by

tion. Using this value ofs3(m)/83(my,), and noting that using a superposition approximatiph7] and the quadruplet

m; 81(m;) =m,,8:(my,), Eq. (36) becomes correlation function involved in the sixth-frequency sum rule

is approximatedsee the Appendijxto the pair correlation

D(mp)  (8x(my)| ¥ function by using a decoupling approximatifis]. The nu-
D(m) | 8x(m) merical integration involved in the expressions of the fre-

quency sum rules has been performed using the Gauss

This expression has been obtained using sum rules up @uadrature method.

sixth order, however the sixth sum rule does not appear in

the final expressiort42). This is an important result as it

proves that the mass dependence of the self-diffusion coeffi- A. Mori's coefficients

cient is_solely determined by lower-order sum _rules. H_ow- First-, second-, and third-order Mori coefficients, i,

ever, this expression is not the same as that derived e_arller b(yz, and&,, have been determined from Eq®5), (26), and

using the sum rules up to fourth order. The expression ob(27)_ The calculated values of Mori's coefficients, i.e.,

and

In writing the above two equations, we have again taken onl
the two-body contribution into account. Using these equa
tions and Eq(27), we found that

1+K
2K

S3(my) _ Sp(my)
o3(my)  Sp(my)

2K
1+K

. (42)

tained in that case is 51(my), 8,(my), anddz(my,), along with MD data for heavy
112 particles are given in Table I. Our values @ (m,),
D(my) — ( 52(mh)) 43 92(my), anddz(my) are found to be in good agreement with
D(my) | &(my) the MD data[4,5,11], as evidenced by their values given in

) o ~ Table I. From Table | it can be seen that the ratio
Now, if we use the approximation employed and tested in afy, 5,(m,)/m, is independent of the value ofrg,/m,) as

earlier work[7], which is given as predicted in[5]. It is found that, initially, the increase in
mass ratio ,/m,) results in a decrease af,(m,) and
S2(Mp) _ ﬂ ) (44) d3(my,). However, when the ratio of the masses of the heavy
So(my) 2K )’ to light particles is highg,(m;) and 5(m,) become almost

independent of the mass of the particle. Since the self-

both the equations, i.e., Eggl2) and(43), yield diffusion coefficient directly depends on these coefficients,
the larger mass ratio diffusion coefficient should depend
weakly upon the mass of the particle. In order to check the
validity of Eqg. (41), we have calculated;(m,) from this
equation by using our numerical values &f{(m,), 5>(my),
Thus the two expressions finally provide the same result. and 8;(m;). The results obtained are given in Table I, in

From Eq. (45) it is clear that for m=my, D(m) parentheses, for mass ratios 4 and 16. The values(ofi,)
=D(m,). It may be noted that fom,>m,, the diffusion predicted from Eq(41) are close to simulation values and,
coefficient of heavy particles becom&{my,)=D(m,)/v2. which implies that the effect of the inclusion of the three-
HenceD(m;)/ 2 could be thought of as the minimum value body contribution in the sum rules is quite small. This im-
of the self-diffusion coefficient that a heavy particle can haveplies that a binary collision approximation may be sufficient
in the host fluid. to study the mass dependence in an isotopic system.

1+K 2

1/2
e

D(mh):
D(my)

(45)

m
1+ —
My
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TABLE I. Values of Mori’s coefficients, in units o&/(ma?) for different values ofn,/m;. MD repre-
sents molecular-dynamics ddt4,5,11. The values of53(my) given in parentheses are predictions of Eq.

(41).
My d1(mp) 32(mp) d3(mp)
m 61(mp) 8,(myp) S3(Mp) MD MD MD
1 224.369 660.460 2238.890 231.90 684.80 2946
4 56.092 443.520 1340.300 56.70 466.0 1230
(1302.340
10 22.437 400.135 1177.787 22.50 398.5
16 14.023 389.288 1138.679 145 417.9 1686
(1072.030
20 11.220 385.672 1125.799 11.2 396.8
30 7.4789 380.852 1108.752 7.5 391.0
40 5.610 378.441 1100.284 5.7 386.2
50 4.480 376.995 1095.222 4.5 390.9
B. Self-diffusion coefficient involve &5 are closer to MD data than the results of E24).

Self-diffusion coefficients of light particles and heavy Further, the inclusion ob; does not affect the earlier pre-
particles are calculated from Eq&3) and (34) using the dlctlpn [7] that the se]f-dﬁfusmn coefficient pf very heavy
numerical values of the Mori coefficients given in Table 1. Particles(for mass ratio=25) has a value which cannot be
The values ofD* (m;)=Do(e/my)¥2 so obtained are re- Iess_than\/l_/z times the self-diffusion coef_f|C|ent _of the fluid
ported in Table Il and MD data are also given there forparticle at a given temperature and density. This can be un-
comparison. Calculated values of the self-diffusion coeffi-derstood from Eq(45), where we have shown analytically
cients are found to be in good agreement with MD datathat for my>m; the self-diffusion coefficient of heavy par-
From Table Il we can see that inclusion of higher-order Moriticles is J1/2 times the self-diffusion coefficient of light par-
coefficients results in a decrease in the value of the selfticles.
diffusion coefficient of heavy particles. This may be due to
the presence of more correlation effects, which comes C. Effect of concentration on mass dependence of diffusion
through 83. To see the effect of the inclusion of the third- coefficient

order Mori coefficient on the diffusion coefficient, we have The effect of concentration on the mass dependence of the

plotted the ratio of two diffusion coefficient, i.€., it sion coefficients of light and heavy particles is analyzed
D*(m,)/D*(m,), in Fig. 1. The solid line represents the g yp Y

results of Eq(33) and the dashed line represents the results |
of Eq. (34). At initial stages, the ratio of the diffusion coef-

ficient D*(m;)/D*(m;) decreases with the mass ratio and
after, saym, /m;=25 it becomes almost independent of the
mass ratio. To compare our results with computer simulatior
data, we have also plotted MShean-square displacemgnt

MD data and MD data in Fig. 1. Solid circles represent MSD
MD data and solid square represent MD data, respectively 085

0.95

0.90

From Fig. 1 it can be seen that the results of BBp) that ’g—
~ 080 .
TABLE II. Self-diffusion coefficient of heavy particle for dif- @
ferent values ofn,/m,. D% (m,) represents the results of E@4) “Z 478 4
and D} (m,) are results of Eq(33). MD1 [4] and MD2 [5,11] é
represent molecular dynamics data. o 070 b i
m, D*(my) D*(my)
m MD1 MD2 D3 (my) D*(my) 065 - . 1
1 0.0810 0.072 0.0822 0.0701 060 R T R TP T
4 0.0683 0.066 0.0674 0.0609 0 10 20 30 40 50
10 0.0637 0.0640 0.0586 (m,/m)
16 0.0633 0.060 0.0631 0.058
20 0.0639 0.0628 0.0578 FIG. 1. Variation of diffusion ratio[ D*(m,)/D*(m;)] with
30 0.0631 0.0624 0.0575 mass ratio K, /m;) for T* =90 andn* =0.75.(a) Solid line is the
40 0.0619 0.0622 0.0573 result of Eq.(33) and dashed line is the result of E@®4). Solid
50 0.0631 0.06214 0.05726 circles and solid squares represent MD MSD and MD data, respec-

tively.
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' " ' ' T " D*(m,)/D*(m), as a function of concentration of light par-
261 ] ticles for different mass ratios in Fig. 2. The curves from
2al bottom to top in the figure correspondng,/m;=2, 4, 8, 16,
‘ and 24, respectively. From Fig. 2 it can be seen that the
ol diffusion ratio decreases as the concentration of light par-
’ ticles increases. This decrease is greater for larger mass ratio.
20l This shows that an increase in the diffusion coefficient of
s i heavy particles with an increase in the concentration of light
E 5L particles is greater compared to the diffusion of light par-
. ticles. The above study shows a considerable effect of a mole
2_ 16l fraction on the mass dependence of a diffusion coefficient.
£
‘a 141 D. Effect of density and temperature on mass dependence
of diffusion coefficient
12 The effect of temperature and density on the mass depen-
dence of self-diffusion is also studied. First, the temperature

L r v S of the system is kept constant, i.€* = 1.23, and the density
is varied fromn* =0.20-0.80, in a step of 0.10, while the
mass ratiom,/m;=2 is also fixed. Results obtained for the
FIG. 2. Variation of diffusionf D* (m,)/D* (m,)] with concen-  self-diffusion coefficients and their ratios are reported in
tration ¢ of the fluid for different mass rati¢K). Solid line for K Table IV. The diffusion ratio decreases by about 4.5% in
=24; dashed line foK=16; dotted line forK=8; short dashed going fromn*=0.20 to 0.80 for the results obtained from
line for K=4; short dotted line foK =2. Eq. (33) and this decrease is about 1.6% for the results ob-

b ing th . fliah icles. Self-diffusi tained from Eq(34). This shows a weak density dependence
y varying the concentration of light particles. Self-diffusion ¢ yhe mags dependence of the self-diffusion coefficient.

coefficients of light and heavy particles are obtained from : .
4 (3 for diferent values o wrich s e concetaton |18 B et e e S ow eri € 02) e
of light particles. Results obtained are reported in Table I”'gas limiting result of tn, /m,) 2 The reason for this depar-

Results corresponding to~1 are for a system which has is th . | h e, |
only one heavy particle in the fluid so that the interactiontUre 'S that our system contains only one heavy particle. In

between the heavy-heavy particles is zero. From Table 111 it"€ sécond case, the density is kept constant,ri’es0.50,

can be seen that the self-diffusion coefficient of both par2nd the temperature is varied frofit =0.90-4.50 for a
ticles increases with an increase in the mole fraction of lighfixed mass ratio, i.e.mn,/m;=2. The self-diffusion coeffi-
particles in the system. This may be because light particle§ients and their ratio obtained so far are given in Table V.
provide less resistance to the movement of other particle§he increase in the diffusion ratio is found to increase by
(light or heavy than do the heavier particles. From Table 11l 1.35% in going fromT* =0.9 to 4.5 for the results obtained

it can also be seen that for larger mass ratio the diffusiofrom Eq.(33), and for the results from Eq34) this increase
coefficient of heavy particles is more influenced by the condis about 0.52%. This shows that the mass dependence of the
centration as compared to the diffusion coefficient of lightdiffusion coefficient on temperature is very weak or negli-
particles. To show explicitly the effect of concentration ongible. Thus it is found that the inclusion @ in the calcu-

the mass dependence of the self-diffusion coefficient, wdations does not change the conclusion that the effect of den-
have plotted the ratio of the self-diffusion coefficient of a sity and temperature on the mass dependence of diffusion is
light particle to that of a heavy particle, i.e., almost negligible, as is evident from E@5).

Concentration

TABLE Ill. Self-diffusion coefficients of light and heavy particles for different value of concentration of
light particles and for different values of mass ratio(=m,,/m,).

Mass ratio
K=2 K=8 K=16 K=24
Concentraton D*(m,) D*(m,) D*(m) D*(m,) D*(m) D*(m,) D*(m) D*(m,)
0.3 0.060 0.052 0.050 0.027 0.048 0.021 0.048 0.019
0.4 0.61 0.054 0.053 0.031 0.051 0.025 0.051 0.024
0.5 0.063 0.055 0.056 0.035 0.054 0.030 0.054 0.029
0.6 0.064 0.057 0.058 0.040 0.057 0.035 0.057 0.034
0.7 0.065 0.058 0.061 0.044 0.060 0.041 0.060 0.040
0.8 0.067 0.060 0.064 0.050 0.063 0.046 0.063 0.045
0.9 0.068 0.062 0.067 0.054 0.067 0.052 0.066 0.051

~1.0 0.070 0.064 0.070 0.060 0.070 0.058 0.070 0.057
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TABLE IV. Values of self-diffusion coefficients of light and TABLE V. Values of self-diffusion coefficients of light and
heavy particles for different values of at T*=1.23 form,/m, heavy particles for different values of* with n*=0.50 for
:2 mh/m|:2.

D3(m) Di(m) D3(m) Di(m)
n*  Dj(m) Di(m) Dj(m) Di(my Dz(m) Di(M) 1% D3(m) Di(m) D3(my) Di(my) Dz(my Di(my)

0.20 0.532 0.476 0.462 0.417 1149 1.140 0.90 0.143 0.130 0.125 0.117 1138 1.111
0.30 0.357 0.316 0.311 0.279 1.146 1.132 1.23 0.210 0.181 0.184 0.162 1.140 1.116
0.40 0.270 0.236 0.236 0.210 1143 1.124 190 0.320 0.270 0.280 0.241 1142  1.120
0.50 0.210 0.181 0.184 0.162 1.140 1.116 250 0.409 0.340 0.358 0.303 1.143 1.122
0.80 0.094 0.079 0.083 0.073 1130 1.088 3.46 0.540 0.431 0.472 0.394 1144  1.125
450 0.673 0.546 0.588 0.484 1.144 1.126

VI. SUMMARY AND CONCLUSIONS
) ACKNOWLEDGMENTS
In the present paper we have studied the mass dependence

of the self-diffusion coefficient of heavy particles in an iso- We gratefully acknowledge financial assistance in the
topic fluid. In this study we have used third-order Mori co- form of a research grant provided by CSIR, New Delhi, In-
efficient 85, which was not included in the earlier study. dia. We are also thankful to Professor K. N. Pathak for useful
Determination of, requires frequency sum rules of VAC discussions.

function up to sixth order, hence we derived an expression

for the sixth sum rule of the VAC function for a two- APPENDIX

component system. The static pair correlation functign)
required for calculations is obtained by using Sung and
Chandler's method based upon optimized cluster theory. Thg
frequency sum rules, up to sixth order, are numericallyf
evaluated for an isotropic fluid in which all particles are in-
teracting via the same LJ potential and the numerical values n3

of the sum rules so obtained are used to evaluate the MoriCGEﬁ J’ f f drqdrodrsga(ri,ra,r3)UsaUaxgUsaps-
coefficients. Self-diffusion coefficient of heavy and light par-

Since very little information is available about the quadru-
let correlation function, we simplify it using the low-order
ecoupling approximation as given below. The expression
or the quadruplet contribution tG¢ is

ticles are evaluated within Mori's memory-function formal- (AL)
ism using the Gaussian memory function. The mole fractionrhis can be equivalently written as
and thermodynamic state dependence of the mass depen-
dence of the self-diffusion coefficient are also studied. 1 #Uy Uy U,

Our values of the Mori coefficients and the self-diffusion C64ZW k2 Sne1 \ O 1, 1 0T 130T 15 I 1407 15]
coefficient, for a system consisting of a single heavy particle (A2)

in the fluid of light particles, are found to be in good agree-

ment with MD results. It has also been found that the ratio ofSince there is no direct coupling between the atoms labeled
the self-diffusion coefficients of a heavy particle to those of aby k, I, andm, we approximate EqA2) as

light particle assumes a constant value after mass ra#b ) ) )

at any density and temperature, which is in agreement with Copm 1 2 U\ /97Uy [ Uy (A3)
earlier predictions and supported by the MD simulations. 64 ﬁng,m &rix &rfx arfx '

Thus it is concluded that higher-order sum rules have no

significant effect on the mass dependence of the selflt may be noted that once the correlation betwkein andm
diffusion coefficient. It is also found that the mole fraction of is neglected, onlyr= 8=x contributes in Eq(A3). Finally,
the light particles has a significant effect on the mass deperid. (A3) can be written as

dence of the self-diffusion coefficient, whereas the density

and temperature dependence of mass dependence is very Co = i 2 Ui 3:(0 )3 (Ad)
weak. 4\ md & ﬁrix 2)"-
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